Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 138(4): 962-971, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087315

RESUMO

OBJECTIVE: Vestibular schwannomas (VSs) are benign nerve sheath tumors that result from mutation in the tumor suppressor gene NF2, with functional loss of the protein merlin. The authors have previously shown that c-Jun N-terminal kinase (JNK) is constitutively active in human VS cells and plays a central role in their survival by suppressing accumulation of mitochondrial superoxides, implicating JNK inhibitors as a potential systemic treatment for VS. Thus, the authors hypothesized that the adenosine 5'-triphosphate-competitive JNK inhibitor AS602801 would demonstrate antitumor activity in multiple VS models. METHODS: Treatment with AS602801 was tested in primary human VS cultures, human VS xenografts, and a genetic mouse model of schwannoma (Postn-Cre;Nf2flox/flox). Primary human VS cell cultures were established from freshly obtained surgical tumor specimens; treatment group media was enriched with AS602801. VS xenograft tumors were established in male athymic nude mice from freshly collected human tumor. Four weeks postimplantation, a pretreatment MRI scan was obtained, followed by 65 days of AS602801 (n = 18) or vehicle control (n = 19) treatment. Posttreatment MRI scans were used to measure final tumor volume. Tumors were then harvested. Finally, Postn-Cre;Nf2flox/flox mice were treated with AS602801 (n = 10) or a vehicle (n = 13) for 65 days. Posttreatment auditory brainstem responses were obtained. Dorsal root ganglia from Postn-Cre;Nf2flox/flox mice were then harvested. In all models, schwannoma identity was confirmed with anti-S100 staining, cell proliferation was measured with the EdU assay, and cell death was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. All protocols were approved by the local institutional review board and Institutional Animal Care and Use Committees. RESULTS: Treatment with AS602801 decreased cell proliferation and increased apoptosis in primary human VS cultures. The systemic administration of AS602801 in mice with human VS xenografts reduced tumor volume and cell proliferation. Last, the AS602801-treated Postn-Cre;Nf2flox/flox mice demonstrated decreased cell proliferation in glial cells in the dorsal root ganglia. However, AS602801 did not significantly delay hearing loss in Postn-Cre;Nf2flox/flox mice up to 3 months posttreatment. CONCLUSIONS: The data suggest that JNK inhibition with AS602801 suppresses growth of sporadic and neurofibromatosis type 2-associated VSs. As such, AS602801 is a potential systemic therapy for VS and warrants further investigation.


Assuntos
Neurofibromatose 2 , Neuroma Acústico , Humanos , Masculino , Camundongos , Animais , Neurofibromatose 2/complicações , Neurofibromatose 2/tratamento farmacológico , Neuroma Acústico/tratamento farmacológico , Neuroma Acústico/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Nus
2.
Dev Dyn ; 249(4): 509-522, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724286

RESUMO

BACKGROUND: Van der Woude syndrome (VWS) is the most common form of syndromic orofacial cleft caused predominantly by mutations in Interferon Regulatory Factor 6 (IRF6). We previously reported that individuals with VWS have increased risk of wound healing complications following cleft repair compared with individuals with nonsyndromic orofacial clefts (nonsyndromic cleft lip and palate-NSCLP). In vitro, absence of IRF6 leads to impaired keratinocyte migration and embryonic wound healing. However, there is currently no data on tissue repair in adult animals and cells with reduced levels of IRF6 like in VWS. RESULTS: Excisional wounds of Irf6+/- and wild-type animals were analyzed 4 and 7 days post-wounding. Although all wounds were reepithelialized after 7 days, the epidermal and wound volume of repaired wounds was larger in Irf6+/- . These data were supported by increased keratinocyte proliferation in the neoformed epidermis and a less mature granulation tissue with increased cytokine levels. This effect was not cell autonomous, as Irf6+/- neonatal keratinocytes in vitro did not exhibit defects in scratch wound closure or proliferation. Keratinocytes from individuals with VWS also migrated similarly to keratinocytes from NSCLP individuals. CONCLUSIONS: These data support a role for IRF6 in wound healing by regulating keratinocyte proliferation, granulation tissue maturation, and cytokine levels.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Cicatrização/fisiologia , Animais , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Fatores Reguladores de Interferon/genética , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...